Národní úložiště šedé literatury Nalezeno 4 záznamů.  Hledání trvalo 0.00 vteřin. 
Diagnostika plazmatu výboje ve vodných roztocích a jeho aplikace
Holíková, Lenka ; Brablec, Antonín (oponent) ; Kozáková, Zdenka (vedoucí práce)
Tato práce pojednává o studiu parametrů diafragmového výboje ve vodném roztoku. Jako vodivé médium byl používán roztok NaCl o různých vodivostech. Vodivosti byly nastavovány v rozmezí 220 až 1000 µS cm-1. Byly použity dvě diagnostické metody pro zkoumání parametrů plazmatu. První z nich probíhala v Laboratoři plazmochemie na Fakultě chemické Vysokého učení technického v Brně, a sice optická emisní spektroskopie. Jako druhá metoda byla použita diagnostika pomocí časově rozlišené ICCD kamery v Laboratoire de Physique des Plasmas na École Polytechnique v Paříži. Reaktor pro měření emisních spekter měl objem 4 l a byl vyroben z polykarbonátu. Polyethylentereftalátová diafragma byla umístěna v přepážce oddělující katodový a anodový prostor. Elektrody byly vyrobeny z titanu, potaženého platinou. Elektrický zdroj dodával stejnosměrné konstantní napětí do 5 kV a proudy do 300 mA. Dále byl použit spektrometr Jobin Yvon TRIAX 550 s CCD detektorem. Optickou emisní spektroskopií byla proměřena přehledová spektra v rozsahu 200 až 900 nm, dále molekulová spektra OH a čárové spektrum Hß. Všechna spektra byla snímána pro obě polarity výboje, tj. u katody i u anody. Z naměřených spekter byly následně počítány základní diagnostické parametry plazmatu, což jsou rotační a elektronová teplota a hustota elektronů. Další část experimentu sestávala z měření s ICCD kamerou iStar 734. Byly použity dva typy reaktorů, první čtyřlitrový byl stejný jako reaktor použitý pro měření optické emisní spektroskopie. Druhý, taktéž vyrobený z polykarbonátu, měl objem vodivého roztoku 110 ml a byly v něm použity elektrody vyrobené z nerez oceli. V obou reaktorech byla použita keramická diafragma (Shapal-MTM). Diafragmy měly různé tloušťky a průměry dírek. ICCD kamerou byl snímán průběh generace bublin a zapalování výboje v závislosti na použitých vodivostech a rozměrech diafragmy vždy v obou elektrodových prostorech.
Studium procesů v dohasínajícím plazmatu
Soural, Ivo ; Hrachová, Věra (oponent) ; Brablec, Antonín (oponent) ; Krčma, František (vedoucí práce)
V této práci bylo studováno dohasínající plazma pomocí optické emisní spektroskopie. Výboj v proudícím režimu byl vytvářen stejnosměrným proudem 45 až 200 mA v Pyrexové a křemenné trubici. Emise tří spektrálních systémů dusíku (1. a 2. pozitivní a 1. negativní) byly studovány v časovém vývoji s ms rozlišením pro různé tlaky 500 až 5 000 Pa; za normální a kapalným dusíkem chlazené teploty stěny (za chlazení bylo v dohasínajícím plazmatu 150 K). Výsledky ukázaly, že všechny tři dusíkové systémy (respektive jejich horní stavy N2(B, v), N2(C, v) a N2+(B, v)) mají maximální hodnoty v dohasínání v tzv. „pink-afterglow“. Tato maxima klesala s rostoucím tlakem a posouvala se k pozdějším časům dohasínání. Maxima rostla s výbojovým proudem (respektive výkonem) a posouvala se ke kratším časům dohasínání. Intenzity a z nich vypočtené vibrační populace za teploty 150 K byly určovány v experimentálním zařízení od 17 ms, a proto nebylo pozorováno maximum „pink-afterglow“ (jen při 5 000 Pa se objevil jeho náznak). Populace byly menší za 150 K než populace měřené za laboratorní teploty v časech okolo 50-100 ms. Za nížšího tlaku a v pozdním čase (přes 120 ms) byly populace vyšší za nižší teploty. V křemenné trubici byly oba posuny maxim populací výraznější než v Pyrexové trubici. Kromě populací byly také stanoveny rotační teploty těchto vybraných pásů všech tří měřených spektrálních systémů (pro 1. negativní systém pás 0-0, pro 1. pozitivní systém pás 2-0 a pro 2. pozitivní systém pás 0-2). Rotační teploty byly monitorovány z předpokladu, že tento druh teploty je roven teplotě neutrálního plynu (za podmínky lokální termodynamické rovnováhy). Výsledky pro 1. negativní a 1. pozitivní systém ukazují, že na začátku dohasínání (do cca 10 ms) dochází k prudkému poklesu rotačních teplot, pak teploty byly konstantní do 20 ms a poté teploty rostly. Tento průběh byl tedy v podstatě opačný než průběh intenzit u těchto spektrálních systémů. Rotační teploty podle očekávání mírně rostly s rostoucím proudem. V případě teploty vypočtené z 2. pozitivního systému byla pozorována špatná reprodukovatelnost výsledků, lze ale vypozorovat zřetelný nárůst teploty v oblasti „pink-afterglow“. Experimentální výsledky byly konfrontovány s numerickým kinetickým modelem vytvořeným skupinou prof. Vasca Guerry na Instituto Superior Técnico v Portugalsku. Pro kalkulaci korespondující s experimentem bylo nalezeno několik souborů podmínek pro simulaci za teplot 500 a 1 000 K v aktivním výboji. Srovnání numerické simulace a experimentálních dat pro stav N2(B) ukázalo, že maxima populací v „pink-afterglow“ jsou závislá na teplotním rozdílu mezi aktivním výbojem a dohasínajícím výbojem. Teoretická maxima populací v „pink-afterglow“ dokonce zmizela v případě, že teploty v aktivním výboji a v dohasínaání byly stejné. Výsledky jasně ukazují, že reálný teplotní profil musí být zahrnut do kinetického modelu.
Studium procesů v dohasínajícím plazmatu
Soural, Ivo ; Hrachová, Věra (oponent) ; Brablec, Antonín (oponent) ; Krčma, František (vedoucí práce)
V této práci bylo studováno dohasínající plazma pomocí optické emisní spektroskopie. Výboj v proudícím režimu byl vytvářen stejnosměrným proudem 45 až 200 mA v Pyrexové a křemenné trubici. Emise tří spektrálních systémů dusíku (1. a 2. pozitivní a 1. negativní) byly studovány v časovém vývoji s ms rozlišením pro různé tlaky 500 až 5 000 Pa; za normální a kapalným dusíkem chlazené teploty stěny (za chlazení bylo v dohasínajícím plazmatu 150 K). Výsledky ukázaly, že všechny tři dusíkové systémy (respektive jejich horní stavy N2(B, v), N2(C, v) a N2+(B, v)) mají maximální hodnoty v dohasínání v tzv. „pink-afterglow“. Tato maxima klesala s rostoucím tlakem a posouvala se k pozdějším časům dohasínání. Maxima rostla s výbojovým proudem (respektive výkonem) a posouvala se ke kratším časům dohasínání. Intenzity a z nich vypočtené vibrační populace za teploty 150 K byly určovány v experimentálním zařízení od 17 ms, a proto nebylo pozorováno maximum „pink-afterglow“ (jen při 5 000 Pa se objevil jeho náznak). Populace byly menší za 150 K než populace měřené za laboratorní teploty v časech okolo 50-100 ms. Za nížšího tlaku a v pozdním čase (přes 120 ms) byly populace vyšší za nižší teploty. V křemenné trubici byly oba posuny maxim populací výraznější než v Pyrexové trubici. Kromě populací byly také stanoveny rotační teploty těchto vybraných pásů všech tří měřených spektrálních systémů (pro 1. negativní systém pás 0-0, pro 1. pozitivní systém pás 2-0 a pro 2. pozitivní systém pás 0-2). Rotační teploty byly monitorovány z předpokladu, že tento druh teploty je roven teplotě neutrálního plynu (za podmínky lokální termodynamické rovnováhy). Výsledky pro 1. negativní a 1. pozitivní systém ukazují, že na začátku dohasínání (do cca 10 ms) dochází k prudkému poklesu rotačních teplot, pak teploty byly konstantní do 20 ms a poté teploty rostly. Tento průběh byl tedy v podstatě opačný než průběh intenzit u těchto spektrálních systémů. Rotační teploty podle očekávání mírně rostly s rostoucím proudem. V případě teploty vypočtené z 2. pozitivního systému byla pozorována špatná reprodukovatelnost výsledků, lze ale vypozorovat zřetelný nárůst teploty v oblasti „pink-afterglow“. Experimentální výsledky byly konfrontovány s numerickým kinetickým modelem vytvořeným skupinou prof. Vasca Guerry na Instituto Superior Técnico v Portugalsku. Pro kalkulaci korespondující s experimentem bylo nalezeno několik souborů podmínek pro simulaci za teplot 500 a 1 000 K v aktivním výboji. Srovnání numerické simulace a experimentálních dat pro stav N2(B) ukázalo, že maxima populací v „pink-afterglow“ jsou závislá na teplotním rozdílu mezi aktivním výbojem a dohasínajícím výbojem. Teoretická maxima populací v „pink-afterglow“ dokonce zmizela v případě, že teploty v aktivním výboji a v dohasínaání byly stejné. Výsledky jasně ukazují, že reálný teplotní profil musí být zahrnut do kinetického modelu.
Diagnostika plazmatu výboje ve vodných roztocích a jeho aplikace
Holíková, Lenka ; Brablec, Antonín (oponent) ; Kozáková, Zdenka (vedoucí práce)
Tato práce pojednává o studiu parametrů diafragmového výboje ve vodném roztoku. Jako vodivé médium byl používán roztok NaCl o různých vodivostech. Vodivosti byly nastavovány v rozmezí 220 až 1000 µS cm-1. Byly použity dvě diagnostické metody pro zkoumání parametrů plazmatu. První z nich probíhala v Laboratoři plazmochemie na Fakultě chemické Vysokého učení technického v Brně, a sice optická emisní spektroskopie. Jako druhá metoda byla použita diagnostika pomocí časově rozlišené ICCD kamery v Laboratoire de Physique des Plasmas na École Polytechnique v Paříži. Reaktor pro měření emisních spekter měl objem 4 l a byl vyroben z polykarbonátu. Polyethylentereftalátová diafragma byla umístěna v přepážce oddělující katodový a anodový prostor. Elektrody byly vyrobeny z titanu, potaženého platinou. Elektrický zdroj dodával stejnosměrné konstantní napětí do 5 kV a proudy do 300 mA. Dále byl použit spektrometr Jobin Yvon TRIAX 550 s CCD detektorem. Optickou emisní spektroskopií byla proměřena přehledová spektra v rozsahu 200 až 900 nm, dále molekulová spektra OH a čárové spektrum Hß. Všechna spektra byla snímána pro obě polarity výboje, tj. u katody i u anody. Z naměřených spekter byly následně počítány základní diagnostické parametry plazmatu, což jsou rotační a elektronová teplota a hustota elektronů. Další část experimentu sestávala z měření s ICCD kamerou iStar 734. Byly použity dva typy reaktorů, první čtyřlitrový byl stejný jako reaktor použitý pro měření optické emisní spektroskopie. Druhý, taktéž vyrobený z polykarbonátu, měl objem vodivého roztoku 110 ml a byly v něm použity elektrody vyrobené z nerez oceli. V obou reaktorech byla použita keramická diafragma (Shapal-MTM). Diafragmy měly různé tloušťky a průměry dírek. ICCD kamerou byl snímán průběh generace bublin a zapalování výboje v závislosti na použitých vodivostech a rozměrech diafragmy vždy v obou elektrodových prostorech.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.